

Verificación de un panel NGS de detección de biomarcadores tumorales para apoyar el uso de las terapias oncológicas personalizadas en cánceres prevalentes y de alta mortalidad en Chile" (Proyecto Ministerio de Ciencias)

15 de mayo de 2025

Jorge Fernández Ordenes

Sección Genética Humana Subdepartamento de Genómica y Genética Molecular Departamento Laboratorio Biomédico Nacional y de Referencia

Coinvestigadores y equipo técnico :

Eduardo Durán J. María Ibáñez A. Iván Ponce L. M. Fernanda Valderrama

Sección Genética Humana Subdepto Genómica y Genética Humana

Paulo Covarrubias P.

Bárbara Parra R.

Departamento de Oncología Básico Clínica (DOBC)

Laboratorio Genómica

Del Cáncer

FACULTAD DE MEDICINA

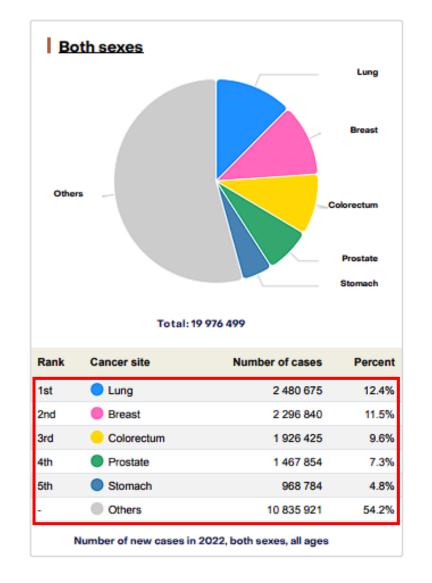
Katherine Marcelain

Jessica Toro C.

Coinvestigadores externos:

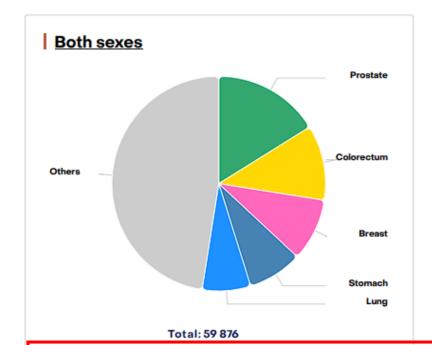
Evelyn González

Alicia Colombo



CANCER A NIVEL MUNDIAL

Statistics at a glance, 2022

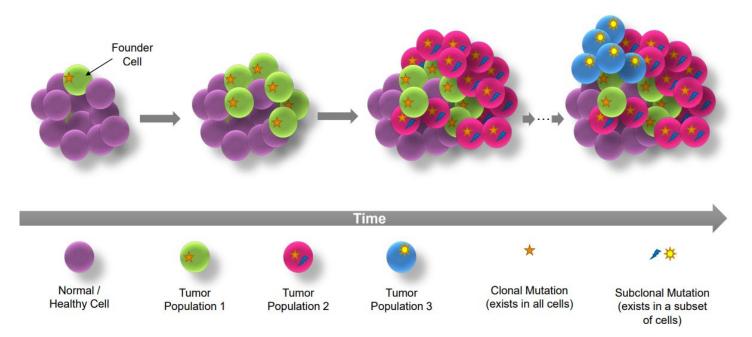

	Males	Females	Both sexes
Population	3 972 735 747	3 912 335 034	7 885 070 781
Incidence*			
Number of new cancer cases	10 311 610	9 664 889	19 976 499
Age-standardized incidence rate	212.6	186.3	196.9
Risk of developing cancer before the age of 75 years (cum. risk %)	21.8	18.5	20.0
Top 3 leading cancers (ranked by	Lung	Breast	Lun
cases)**	Prostate	Lung	Breas
	Colorectum	Colorectum	Colorectur
Mortality*			
Number of cancer deaths	5 430 284	4 313 548	9 743 83
Age-standardized mortality rate	109.8	76.9	
		76.9	91.
Risk of dying from cancer before the age of 75 years (cum. risk %)	11.4	8.0	91.
age of 75 years (cum. risk %) Top 3 leading cancers (ranked by			9.
age of 75 years (cum. risk %)	11.4	8.0	9. Lun
age of 75 years (cum. risk %) Top 3 leading cancers (ranked by	11.4 Lung	8.0 Breast	9.0 Lung Colorectur
age of 75 years (cum. risk %) Top 3 leading cancers (ranked by	11.4 Lung Liver	8.0 Breast Lung	• • • • • • • • • • • • • • • • • • • •

The Global Cancer Observatory | All rights reserved | Globocan 2022 (version 1.1) - 08.02.2024

CANCER EN CHILE

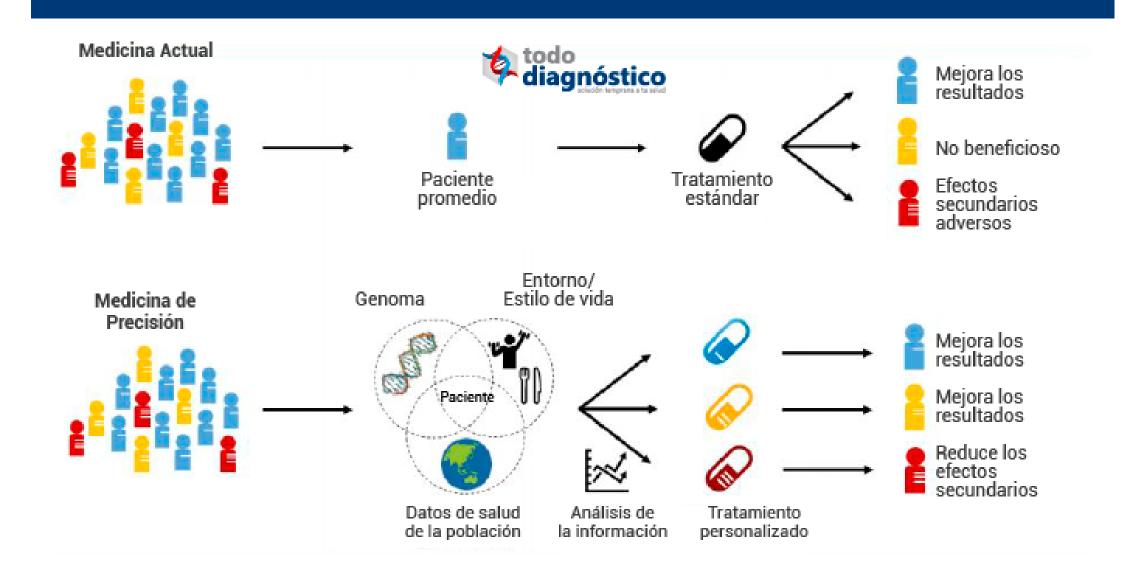
Rank	Cancer site	Number of cases	Percent
1st	Prostate	9 678	16.2%
2nd	 Colorectum 	6 778	11.3%
3rd	Breast	5 640	9.4%
4th	Stomach	4 955	8.3%
5th	Lung	4 391	7.3%
-	Others	28 434	47.5%

The Global Cancer Observatory | All rights reserved | Globocan 2022 (version 1.1) - 08.02.2024


ALTERACIONES GENÉTICAS EN CÁNCER

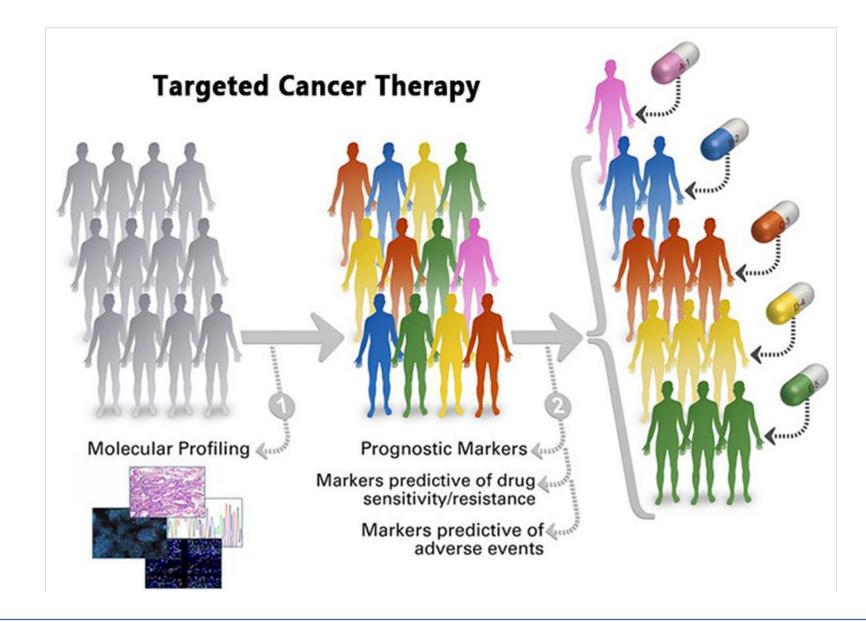
Proyecto Genoma Humano (2001) ~20.000 genes codificantes

Composición de una muestra tumoral



El cáncer es una enfermedad genéticamente heterogénea y dinámica

No todas las mutaciones producidas van a dar lugar a cáncer

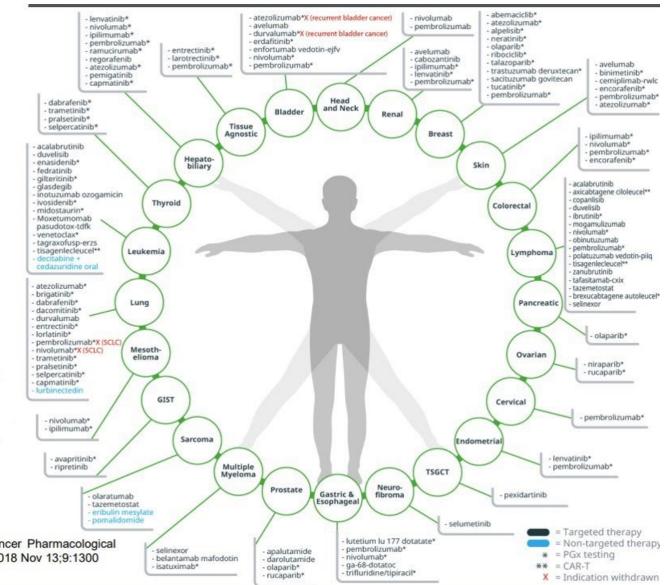

No todas las variantes son patogénicas y las variantes patogénicas pueden servir como biomarcadores genéticos para el diagnóstico y elección de tratamiento

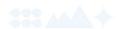
MEDICINA ACTUAL VS. MEDICINA DE PRECISIÓN

MEDICINA DE PRECISIÓN

TERAPIAS DIRIGIDAS A BIOMARCADORES GENÉTICOS EN ONCOLOGÍA

Según su indicación, pueden ser:


- Terapias dirigidas dependientes del tipo tumoral
- Terapias dirigidas independiente de tumor


Secuenciación Masiva (NGS)

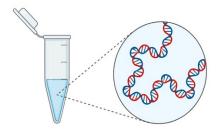
Estudio de perfil genético de cada tumor

Fármacos aprobados en oncología en U.S.A entre 2016 y 2020

Adaptado de: Falzone L, Salomone S, Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front Pharmacol. 2018 Nov 13;9:1300 doi: 10.3389/fphar.2018.01300. PMID: 30483135.



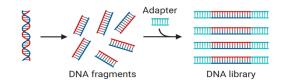
Preparación de Muestras tumorales FFPE:


Recolección de Muestras Tumorales de CCR FFPE (BTUCH) 67 muestras

♂ (50,7%) y ♀ (43%)

Extracción de DNA desde cortes histológicos FFPE (6micras) >20% tejido tumoral

Kit GeneJET



Cuantificación del DNA

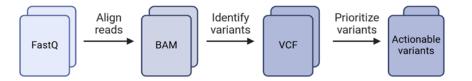
Fluorometría de alta sensibilidad (Qubit HS)

Preparación de Librerías y Secuenciación

TumorSec™

- Basado en sondas de hibridación
- Evalúa 25 genes
- Tiempo de ejecución 24 a 48 hrs
- 200ng DNA inicial

AmpliSeq Cancer HotSpot


- Basado en amplificación de sitios hotspot
- Evalúa 50 genes
- Tiempo de ejecución 8 hrs
- 50ng DNA inicial

- Librerías de 39 muestras (máximo)
- 1.2 pM en cardtrige V2 de 300 ciclos pair ends (Illumina)
- control de PhiX a concentración final del 5%.
- Se incluyen controles HD200(Horizon)

Análisis Bioinformático

Datos NGS(ambas estrategias)

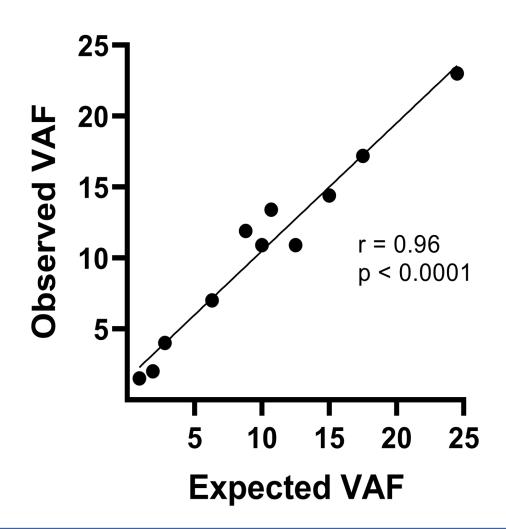
Pipeline Bioinformático
TumorSec[™]
(Desarrollado por inv. de la U
de Chile)

Software CLC Workbench(QIAGEN)

Franklin (Genoox)

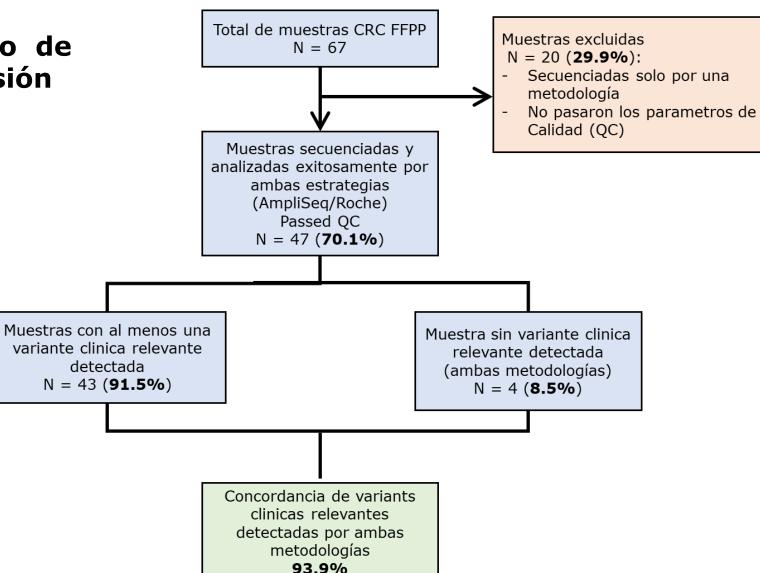
Análisis comparativo de regiones comunes

Análisis Bioinformático Servidor BLADE DELL 384 cores. 4 TB RAM

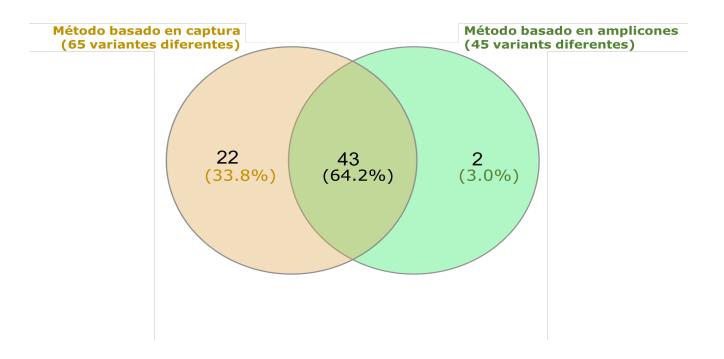

**** ***

Genes Comunes (15)

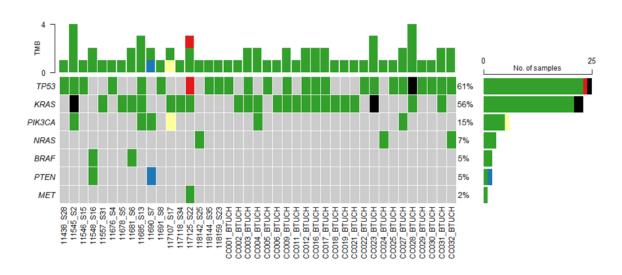
AmpliSeq Hotspot v2 panel (Illumina)	TumorSec panel (K. Marcelain)
AKT1	AKT1
ALK	ALK
BRAF*	BRAF
EGFR	EGFR
ERBB2	ERBB2
IDH2	IDH2
KIT	KIT
KRAS*	KRAS
MET	MET
NRAS*	NRAS
PDGFRA	PDGFRA
PIK3CA*	PIK3CA
PTEN	PTEN
SMO	SMO
TP53*	TP53


Control analítico: Verificación del rendimiento y sensibilidad analítica del panel

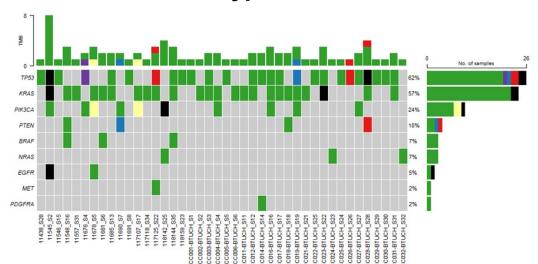
Correlación entre las frecuencias alélicas esperadas (*eje x*) para variantes informadas en una muestra de control FFPE estándar comercial y las observadas por el ensayo (*eje y*). Se utilizó la muestra HD200 FFPE Horizon Discovery. Frecuencias alelicas ~0.8 a ~20%)



Comparación entre estrategias de preparación de librerías



	N° variantes totales	N° variantes un método	N° variantes compartidas
Roche/TumorSec [™] (método captura)	83	22	61 (94%) (de las variantes detectadas por Ampliseq)
Ampliseq/TumorSec [™] (método amplicones)	65	4	



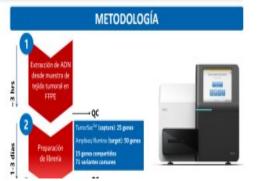
Onclopots de variantes clínicamente relevantes detectadas por muestra y gen.

AmpliSeq Hotspot Panel

TumorSec-HyperPlus

Comparación de metodologías

	TumorSec-HyperPlus	AmpliSec Hotspot Panel
Química de las librerías	Captura por hibridación	Amplificación por PCR
Número de marcadores	25	50
Región del genoma que estudia	Permite la búsqueda de mutaciones críticas en regiones genómicas amplias asociadas al cáncer.	Está orientado a la detección de mutaciones críticas en regiones genómicas más acotadas o específicas asociadas al cáncer.
Regiones de estudio (en los 15 genes compartidos)	333 regiones	210 regiones
Costo por muestra	~\$700.000 CLP	~\$500.000 CLP
Tiempo de preparación	2 días	6 horas
Ventaja principal	Panel optimizado con marcadores relevantes para población chilena	Permite la detección de mutaciones somáticas en genes con relevancia oncologíca a nivel mundial.
Desventaja principal	Mayor costo y tiempos prolongados de preparación	Riesgo de sesgos de amplificación inherentes a la técnica de PCR
Muestras por corrida*	60	60
Cantidad de ADN requerida	200 ng	10 ng



IDENTIFICACIÓN DE VARIANTES CON RELEVANCIA CLÍNICA EN BIOPSIAS TUMORALES EN FFPE IMPLEMENTACIÓN DE METODOLOGÍA NGS EN EL INSTITUTO DE SALUD PÚBLICA DE CHILE

- Eduardo Durán Jara¹, Iván Ponce López¹, Jessica Toro Carrasco², María Ibáñez Aravena¹, Paulo Covarrubias Pizarro¹, Marcelo Rojas Herrera¹, Katherine Marcelain Cubillos³, Bárbara Parra Rivas¹⁺, Jorge Fernández Órdenes¹⁺
 - ¹ Subdepartamento Genómica y Genética Molecular, Departamento Laboratorio Biomédico Nacional y de Referencia, instituto de Salud Pública de Chile, Marathon 1000, Ñuñoa,
 - ² Laboratorio Genômica del Cáncer. Departamento de Oncología Básico-Clinica, Facultad de Medicina, Universidad de Chile. Av. Independencia 1027, 8380453, Independencia. Santiago. Chile.

Se ha demostrado que los cánceres, aparentemente homogéneos en histología, pueden adquirir diferentes mutaciones (variantes genéticas) que determinan su pronóstico y respuesta a tratamientos. La secuenciación de próxima generación (en Inglés, NGS), permite la secuenciación masiva de grandes segmentos de ADN, aumentando la cantidad de genes analizables y tipos de mutaciones detectables, además de optimizar los tiempos de respuesta y costos asociados a su análisis. En el año 2020 se desarrolló una nueva Estrategia Nacional de Salud en Chile, la cual está en concordancia con el Plan Nacional de Cáncer y su Plan de Acción 2018-2028 del MINSAL, orientándose a fortalecer el diagnóstico y tratamiento del cáncer a través del análisis de NGS. El objetivo del presente proyecto fue implementar un ensayo de secuenciación para potenciar el tratamiento dirigido del cáncer, a través del uso de NGS, dando un mayor impulso a la medicina de precisión en Chile, especificamente en el sector público. Se implementó un test

Article

Towards personalized precision oncology: A feasibility study of NGS-based variant analysis on FFPE CRC samples in a Chilean public health system laboratory

Eduardo Durán-Jara¹, Iván Ponce¹, Marcelo Rojas¹, Jessica Toro², Paulo Covarrubias¹, Natalia T. Santis-Alay^{1,3}, Mario E. Soto-Marchant^{1,4}, Katherine Marcelain², Jorge Fernández^{1*}, Bárbara Parra¹

- 1 Subdepartamento de Genómica y Genética Molecular, Laboratorio Nacional Biomédico y de Referencia, Instituto de Salud Pública de Chile, Av. Marathon 1000. Ñuñoa, Santiago. Chile
- Laboratorio de Genómica del Cáncer, Facultad de Medicina, Universidad de Chile. Av. Independencia 1027, 8380453, Independencia, Santiago. Chile
- ³ Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile. Santiago, Chile.
- Escuela de Tecnología Médica, Facultad de Salud y Odontología, Universidad Diego Portales. Santiago, Chile

CONCLUSIONES

- Las variantes clínicamente relevantes detectadas en las muestras procesadas por el panel comercial AmpliSeq Cancer Hotspot Panel v2 (basado en amplicon) también se detectaron utilizando la estrategia de preparación de libreria KAPA/Roche (basada en captura).
- La diferencia en la detección de variantes, podría explicarse porque mostraron un VAF cercano al umbral (5%), y por las diferencias en las regiones cubiertas por cada kit (Gen completo v/s sitios hotspot).
- Teniendo en cuenta que la cartera de TumorSecTM está diseñada para analizar variantes clínicamente relevantes en la población latinoamericana, y el rendimiento y concordancia con los resultados obtenidos con el kit comercial Ampliseq, sugieren que TumorSecTM podría ser usado con su propio pipeline de libre acceso para priorizar y anotar variantes accionables, lo cual podría reducir el tiempo y los costos de análisis.
- El presente estudio permitió sentar las bases para la implementación de ensayos de NGS en el sistema de salud pública, a través de la exitosa puesta en marcha de dos esquemas metodológicos de análisis de muestras tumorales en FFPE, dando un soporte metodológico y de empírico para la adopción de estas herramientas de diagnóstico molecular para guiar futuras políticas públicas relativas a la oncología de precisión.

PROYECCIONES

Identificación de variantes genéticas con accionabilidad terapéutica en muestras de pacientes con cánceres de mama y pulmón en Chile para la generación de un reporte clínicamente útil y relevante (Proyecto Ministerio de Ciencias 2024).

Chile tiene al ISP —— Gracias